Large-network travel time distribution estimation for ambulances

نویسندگان

  • Bradford S. Westgate
  • Dawn B. Woodard
  • David S. Matteson
  • Shane G. Henderson
چکیده

We propose a regression approach for estimating the distribution of ambulance travel times between any two locations in a road network. Our method uses ambulance location data that can be sparse in both time and network coverage, such as Global Positioning System data. Estimates depend on the path traveled and on explanatory variables such as the time of day and day of week. By modeling at the trip level, we account for dependence between travel times on individual road segments. Our method is parsimonious and computationally tractable for large road networks. We apply our method to estimate ambulance travel time distributions in Toronto, providing improved estimates compared to a recently published method and a commercial software package. We also demonstrate our method’s impact on ambulance fleet management decisions, showing substantial differences between our method and the recently published method in the predicted probability that an ambulance arrives within a time threshold. © 2016 Elsevier B.V. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Travel Time Estimation for Ambulances Using Bayesian Data Augmentation1 by Bradford

We introduce a Bayesian model for estimating the distribution of ambulance travel times on each road segment in a city, using Global Positioning System (GPS) data. Due to sparseness and error in the GPS data, the exact ambulance paths and travel times on each road segment are unknown. We simultaneously estimate the paths, travel times, and parameters of each road segment travel time distributio...

متن کامل

Time Estimation for Ambulances Using Bayesian Data Augmentation

We introduce a Bayesian model for estimating the distribution of ambulance travel times on each road segment in a city, using Global Positioning System (GPS) data. Due to sparseness and error in the GPS data, the exact ambulance paths and travel times on each road segment are unknown. We simultaneously estimate the paths, travel times, and parameters of each road segment travel time distributio...

متن کامل

Travel Time Estimation for Ambulances using Bayesian Data Augmentation

Estimates of ambulance travel times on road networks are critical for effective ambulance base placement and real-time ambulance dispatching. We introduce new methods for estimating the distribution of travel times on each road segment in a city, using Global Positioning System (GPS) data recorded during ambulance trips. Our preferred method uses a Bayesian model of the ambulance trips and GPS ...

متن کامل

یک نگرش ترکیب سطوح برای تخمین ماتریس مبدأ و مقصد در شبکه‌های بزرگ مقیاس

Transportation problems are usually considered in large-scale networks, where finding the optimal solution of these problems is so time-consuming and costly. Therefore, a useful method to solve the large-scale network problems is dividing them into some smaller sub-problems. In this paper, for the first time, the origin-destination (o-d) matrix estimation problem is considered through a mixed p...

متن کامل

Intelligent Traffic Management System for Prioritizing Emergency Vehicles in a Smart City (TECHNICAL NOTE)

Traffic congestion worldwide has led to loss of human lives due to failure in transporting accident victims, critical patients, medical equipment and medicines on time. With the unending growth in vehicular traffic everywhere, Internet of Things (IOT) and Vehicular Ad Hoc Network (VANET) have embarked as a promising platform for an Intelligent Traffic Management System (ITMS). Many researches h...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • European Journal of Operational Research

دوره 252  شماره 

صفحات  -

تاریخ انتشار 2016